NAVAL POSTGRADUATE SCHOOL Monterey, California

DATA ACQUISITION AND ANALYSIS TECHNIQUES FOR MEASUREMENT OF UNSTEADY WALL PRESSURES

IN A TRANSONIC COMPRESSOR
J. M. Simmons and R. P. Shreeve

July 1977

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral I. W. Linder
Jack R. Borsting
Superintendent
Provost

The work reported herein was supported by Naval Air Systems Command, Washington, D.C.

Reproduction of all or part of this report is authorized.

This report was prepared by:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPOAT NUMEER 2. GOVT ACCESSION NO. NPS-67Sf77071	3. RECIPIENT'S CATALOG NUMEEA
4. TITLE (and Subtitle) DATA ACQUISITION AND ANALYSIS TECHNIQUES FOR MEASUREMENT OF UNSTEADY WALL PRESSURES IN A TRANSONIC COMPRESSOR	5. TYPE OF MEPORT A PERIOD CDVERED Interim October, 1976 to June, 1977
	*. perfonmingorg. repont numeer
7. AUTMOR(0) J. M. SIMMONS and R. P. SHREEVE	8. CONTAACT OR GRANT NLMEEA(0)
Naval Postgraduate School Monterey, California 93940	10. PROGRAMELEMENT PROJECT. TASK AREA WORK UNIT NUMEERS N6237677WR00008
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command, Code AIR-310 Washington, DC 20360	12. mepont oate July, 1977
	13. NUMEEROFPAGES
14. MONTTOMIMG AGENCY NAME A ADDEESS(If Giltormit from Controlling Ofllie)	18. SECUMITY CLASS. (of the rimort) UNCLASSIFIED
	TB. DECLASSIFICATION/DOWNGRADING
16. DISTMIDUTION STATEMENT (OI UHA Report) Approved for public release; distribution unlimited	
17. DISTRIBUTION STATEMENT (of the abotrelt miorod in Dlock 20, 11 difformi tron Repory)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Contimue on reveree eide ll nececeert and ldentiry by bloed number) Transonic Compressors Unsteady Measurements Air-breathing Propulsion	
 Real-time data acquisition and analysis tech for the measurement of unsteady wall pressures in report contains listing and explanatory notes for intended as a guide to users of the system. Prel in the form of casing wall pressure contours. Th ness and versatility of the system in its ability rapidly fluctuating signals with the rotation of	niques have been developed a transonic compressor. The the computer codes and is iminary results are presented ey demonstrate the effectiveto synchronize sampling of the rotor.

ACKNOWLEDGEMENTS

The work described in this report was conducted while the first author was a Visiting Professor at the Naval Postgraduate School. The authors are grateful for the sponsorship by the Naval Air Systems Command under the cognizance of Dr. H. J. Mueller, Code AIR-310 and for the support received from the University of Queensland. Thanks are also due to Mr. J. Hammer for his considerable assistance throughout this work and to Mrs. E. D. Greene for her typing.
Section Page

1. INTRODUCTION 4
2. EQUIPMENT AND INSTRUMENTATION 4
2.1 The Transonic Compressor 4
2.2 Pressure Measurement 5
2.3 The Timing Disk 5
3. DATA ACQUISITION 6
3.1 The System Hardware 6
3.2 The Program KULITE 7
3.3 The Program TRAN4 8
3.4 The Program RESETI 9
4. DATA ANALYSIS 9
4.1 The Programs 9
4.2 Sample Results 10
5. CONCLUSIONS AND RECOMMENDATIONS 21
6. REFERENCES 24
APPENDIX A. Location of Pressure Transducers 25
APPENDIX B. Details of KULITE 26
APPENDIX C. Details of TRAN4 35
APPENDIX D. Details of RESET1 42
APPENDIX E. Details of MAP1 43
APPENDIX F. Details of MAP2 50
APPENDIX G. Details of CONT1 54
APPENDIX H. Details of CONT 64
APPENDIX I. Details of PLOTSA and PLOTSB 67
APPENDIX J. Operating Procedure 70
APPENDIX K. Operating Procedure for Data Acquisition System 73

LIST OF TABLES

1. Location of Kulite Pressure Transducers and Pneumatic Static Pressure Taps 25
2. Listing of KULITE 29
3. Allocation of Signals to A/D Converter Channels 32
4. Listing of TRAN4 38
5. Listing of RESETI 42
6. Listing of MAP1 45
7. Listing of MAP2 51
8. Listing of CONT1 56
9. Listing of CONT 65
10. Listing of PLOTSA 68
11. Listing of PLOTSB 69
12. Listing of TITIPK 71

LIST OF FIGURES

Page
Figure 1. Schematic of the data acquisition system hardware 6
Figure 2. Waveshapes of unsteady pressure distributions across two blade passages (uncalibrated and with arbitrary offsets) for the Kulite transducers. Data taken in pacer mode. 50% design speed; throttled to near surge. $8.7 \mathrm{lbm} / \mathrm{sec}$ referred flow rate. Pressure ratio $=$ 1.155:1. Blade pair 非2 11
Figure 3. Typical record of raw one per blade signal taken in pacer mode. Blade passage frequency is 4.55 kHz 12
Figure 4. Typical record of data taken in free-run mode from Kulite number Kl0. The record is comprised of 1616 samples taken at a frequency of 100 kHz . Each cycle is due to a blade passage with a blade passing frequency of 4.55 kHz . Compressor operating condi- tions as in Figure 2 12
Figure 5. Contours of constant pressure coefficient ΔC_{p} plotted by CONTl. (See Appendix E for definition of ΔC_{p}). Blade pair number 2. Compressor operating conditions as in figure 2 13
Figure 6. Smoothed contours of constant pressure coefficient obtained from figure 5. 14
Figure 7. Contours of constant pressure coefficient plotted by CONT with 25×255 array. Blade pair number 2. Com- pressor operating conditions as in figure 2 15
Figure 8. Contours of constant pressure coefficient plotted by CONT with 7×64 array as subset of array used for figure 7 16
Figure 9. Contours of constant pressure coefficient plotted with CONT1 with 8×128 array. Note that there is a small error in blade location. Blade pair number 2. 60\% design speed. Throttled to near surge 17
Figure 10. Flow diagram for KULITE 28
Figure 11. Flow diagram for TRAN4 37
Figure 12. Sample print-out from TRAN4 for calibration, mode 0 (pacer) and mode 4 (free-run) operation 41
Figure 13. Flow diagram for MAP1 44
Figure 14. Flow diagram for CONTI 55

1. INTRODUCTION

The work reported here is part of a continuing program aimed at determining the unsteady flow in a transonic compressor stage. The stage is installed in the Turbopropulsion Laboratories of the Department of Aeronautics, Naval Postgraduate School.

This report has been compiled to facilitate use of the data acquisition and analysis programs which have been developed primarily for the study of unsteady fluctuating pressures on the casing inner wall. The equipment and instrumentation are discussed briefly in section 2. The data acquisition system and programs are outlined in section 3 and described in detail in the appendices. The post-real time data analysis programs are outlined with sample results in section 4 and are described in detail in the appendices. Section 5 contains conclusions and recommendations for further work.
2. EQUIPMENT AND INSTRUMENTATION

2.1 The Transonic Compressor

The transonic compressor test rig comprises an air turbine drive unit and an induction section which contains a filter, throttle, settling chamber and flow measuring nozzle. The turbine drive unit supplies 450 HP at 30,000 RPM. The compressor is designed to operate at 30,460 RPM with a relative tip Mach number of 1.5. At the design RPM and the tip Mach number, the flow angle is 65° and the pressure ratio is 1.6 at a referred flow rate of $19 \mathrm{lbm} / \mathrm{sec}$. The laboratory facilities and the test rig are described in detail by VAVRA and SHREEVE (1972) and VAVRA (1973).

2.2 Pressure Measurement

Eight Kulite CQL-080-25 pressure transducers with natural frequency about 125 kHz are mounted with their diaphragms flush with the inner case wall of the compressor. Further details are reported by PAIGE (1976). Table 1 in Appendix A gives the axial and circumferential location of the transducers relative to transducer number K 6 which is the furthest upstream. The transducers are used in conjunction with Datel Model 201C instrumentation amplifiers which have a flat frequency response to 100 kHz .

Each Kulite pressure transducer is matched by a pneumatic static pressure tap at the same axial location in the case wall (except in one case - see Table 1 in Appendix A) but displaced circumferentially. Other pneumatic static and total pressure taps are available upstream. A data recording system (VAVRA and SHREEVE, 1972) is used to record both the steady pressures from the pneumatic taps and the temperature data. The paper tape output from this system is processed using a Hewlett Packard Model HP9830A programable calculator to provide input data for the measurement of fluctuating pressures and to establish the compressor operating point.

2.3 The Timing Disk

To enable synchronization of the sampling of the pressure transducer outputs with the rotation of the rotor, an instrumented timing disk is fitted to the rotor shaft. The disk contains holes at intervals of one per rotor blade and one per rotor revolution. Light sensitive diodes and wave shaper circuits provide pulse trains to control sampling of the pressure transducers. This system is described in detail by WEST (1976).

3. DATA ACQUISITION

3.1 The System Hardware

Figure 1 is a schematic of the data acquisition hardware with arrows indicating the flow of data and control signals. The system is under the control of the HP 21 MX computer which operates either directly or through the device called "Pacer" to control the analog-to-digital (A/D) converter (model HP5610A) and which transfers data to the HP9867B mass memory unit via the HP9830A calculator.

Figure 1. Schematic of the data acquisition system hardware

The peripheral device called the "pacer" is described in detail by WEST (1976) who originally called it RPACE. The pacer can trigger data acquisition from a stationary transducer at any fixed point in the rotating rotor frame, independent of the rotor speed. In effect, it divides the circumference of the rotor into 9 intervals, each with a circumferential length equal to that of the arc (measured at the wall) across two adjacent blade passages. Each of the 9 intervals are subdivided into 256 equal sub-intervals.

The pacer receives one per revolution and one per blade input signals from the timing disk and performs two functions; it controls the timing for data acquisition and determines the speed of the rotor.

3.2 The Program KULITE

KULITE is the data acquisition program (in BASIC language) for the HP 2IMX computer. A flow diagram, listing, variable assignment and notes are presented in Appendix B. KULITE can be operated in three modes, viz. free-run, calibration and pacer.

In free-run mode the A / D converter operates in mode 4 (see Reference No. 5). Up to 1616 samples of one A/D converter channel are taken with a frequency of 10^{5} samples per second. The sampling process is not synchronized with the rotor rotation.

In calibration mode the A / D converter operates in mode 4 (see Reference No. 5). It scans through A / D converter channel numbers 1 to 12 , taking 1616 samples on each channel. The average of the 1616 samples is computed before the next channel is sampled. The scan is performed four times, with four different calibration pressures applied to the reference side of each Kulite transducer.

In pacer mode the A / D converter operates in mode 0 (see Reference No. 5). Sampling of a Kulite transducer output is synchronized with rotor rotation by means of two pulse trains generated from light beams chopped by the timing disk on the compressor shaft. One pulse train has a frequency of one per rotor revolution and the other has a frequency of 18 per rotor revolution; each pulse in the latter train corresponding to the passing of a blade past a fixed point. A full description is given by WEST (1976).

In this mode a pressure transducer is sampled on successive revolutions at a fixed point in the rotating rotor frame. Currently, the sample interval is several revolutions of the rotor. Changes in program RPACE would allow samples to be taken at intervals of one revolution. If the flow can be regarded as steady in the rotating rotor frame this technique enables measurement of the wall pressure distribution "carried around" by the rotor. Flow unsteadiness in the rotating frame can be averaged or the frequency content of the unsteadiness in successive samples can be examined. In this report only averaged data from 10 samples taken at each of 128 points across two rotor blade passages, is presented.

In all three modes of operation the program KULITE transfers data from the HP21MX to the HP9830A.
3.3 The Program TRAN4

TRAN4 is the data acquisition program (in BASIC language) for the HP9830A programmable calculator. It receives data from the HP21MX computer, processes it and stores data on a disk of the HP9867B mass memory. A flow diagram, listing, variable assignment and notes are presented in Appendix C.

RESETI initializes a record number on the storage disk so that at the start of a run data can be stored in file DATAYl beginning at the first record. The program is listed in Appendix D.

4. DATA ANALYSIS

4.1 The Program

Off line data analysis is at present performed on the HP9830A with the BASIC language programs MAP1, MAP2, CONT, CONT1, PLOTSA, PLOTSB and TITIPK. These programs are described in detail, with listings, flow diagrams and notes, in Appendices E through J.

MAP1 is used to determine the sensitivity of the Kulite pressure transducers from data acquired with KULITE in the calibration mode. In addition, MAP1 is used to convert the voltages sampled at the pressure transducer outputs to pressure coefficients.

MAP2 is used to convert the 8×128 array of measured pressure coefficients to a 29×128 array through quadratic interpolation in the axial direction. The program was written to reduce the effects of the course transducer spacing in the axial direction. However, care must be exercised when it is used to interpolated across discontinuities such as shock waves and rotor blades. Linear interpolation is available through use of the program CONT or CONT1 to plot contours of casing wall pressures.

CONT is used to plot contours of constant casing wall pressure (in the frame of the rotor) from an array of pressure coefficients. (i.e. it produces a wall pressure "map"). The program will accept any general rectangular array provided that the spacing in each direction is uniform. This latter
requirement restricts it's use in this application to arrays obtained from MAP2.
CONT1 is used to plot contours of constant casing wall pressure when the array of measured pressure coefficients contains nonuniform spacing in the axial direction. Nonuniform spacing results in this application from the axial location of the Kulite pressure transducers.

PLOTSA is used to plot (on the HP9862A plotter) the uncalibrated pressure distribution (in volts) across a blade pair for a given Kulite transducer. The input data is that originating from pacer mode of operation. The program is also used to plot the output of the one per blade signal from the timing disk.

PLOTSB is used to plot (on the HP9862A plotter) the uncalibrated freerun data (in volts) from a given transducer against circumferential distance.

TITIPK is used to superimpose the blade tip profiles on the wall pressure maps.

4.2 Sample Results

The results presented here are intended only to illustrate the capabilities of the programs. Comprehensive results will be given in a subsequent report.

Figure 2 is a plot versus circumferential distance of the average pressure in the frame of the rotor across an arc of the casing wall equivalent to two blade passages. The pressure coefficient is defined in Appendix E. The plot was made with PLOTSA using data acquired in the pacer mode of operatior The precise location of each distribution relative to the rotor blades is not defined here. The locations are known approximately from the blade pair number specified in the acquisition program. They are located precisely from

Circumferential distance in opposite direction to rotation
Figure 2. Waveshapes of unsteady pressure distributions across two blade passages (uncalibrated and with arbitrary offsets) for the Kulite transducers. Data taken in pacer mode. 50% design speed; throttled to near surge. $8.71 \mathrm{bm} / \mathrm{sec}$ referred flow rate. Pressure ratio $=$ 1.155:1. Blade pair 非2.

Figure 3. Typical record of raw one per blade signal taken in pacer mode. Blade passage frequency is 4.55 kHz .

Figure 4. Typical record of data taken in free-run mode from Kulite number K10. The record is comprised of 1616 samples taken at a frequency of 100 kHz . Each cycle is due to a blade passage with a blade passing frequency of 4.55 kHz . Compressor operating conditions as in figure 2.

Figure 5. Contours of constant pressure coefficient ΔC_{p} plotted
by CONT1. (See Appendix E for definition of $\triangle C_{n}$). Blade pair number 2. Compressor operating conditions as in figurb 2.

Figure 6. Smoothed contours of constant pressure coefficient obtained from Fig

Figure 7. Contours of constant pressure coefficient plotted by CONT with 25×255 array. Blade pair number 2. Compressor operating conditions as in Figure 2.

Figure 8. Contours of constant pressure coefficient plotted by CONT with 7×64 array as subset of array used for Figure 7.

Figure 9. Contours of constant pressure coefficient plotted by CONT with
8×128 array. Note there is a small error in blade location. Blade pair number 2. Sixty percent design speed. Throttled to near surge.
a knowledge of the orientation of the timing disk relative to the rotor in conjunction with the phase relationship between the one per blade timing signal and the pressure distributions from the transducers. A typical record of the one per blade signal, taken directly from the photo-diode output in the pacer mode is plotted in figure 3.

The distributions shown are of output voltage from the Kulite transducers which at this stage have not been scaled to take account of the tranducer calibrations. The rapid changes in the signals, in particular those from transducers K9, K10 and Kll, are due to the passage of a rotor blade across a transducer and provide one means of estimating blade location. The distributions have been plotted by linear interpolation between the 128 points across the blade pair. Each of the 128 points has been obtained from the average of ten samples, one sample being taken approximately each tenth revolution of the rotor.

Figure 4 is a typical record of data taken in the free-run mode from a particular transducer. The fundamental frequency is that of the blade passage past the transducer (4.55 kHz). The plot is a linear interpolation between 1616 samples taken at a frequency of 100 kHz .

Figure 5 is a representative map of the contours of constant pressure coefficient with respect to an upstream reference static pneumatic pressure. It was generated with the program CONT1 from the 8×128 array of measurements which were taken in the pacer mode and calibrated with the program MAP1. The map across two adjacent rotor blade passages is thus that of the mean wall pressures "carried around" by the rotor. The method of calculating the the pressure coefficients from the Kulite transducer outputs and the measurements from the pneumatic taps is given in Appendix E.

The location of the blade tip in figure 5 was determined from the circumferential location of the rapid change in pressure distribution associated with transducer K9 (figure 2). The transducer K 9 has an axiai location such that it is crossed by the leading edge of rotor blades. A more precise location of blades can be obtained from measurement of the circumferential location of the one per blade raw signal (figure 3) relative to the pressure distributions (figure 2) and from knowledge of the location of the one per blade holes in the timing disk relative to the rotor.

Smoothing of the Wall Pressure Maps
It is clear in figure 5 that linear interpolation between pressure coefficients in the axial direction across a blade gives incorrect contours along the blade between the transducer locations. This difficulty can only be overcome satisfactorily by using more Kulite transducers to provide a finer mesh than the rather coarse one provided by eight transducers. In this study the contours in the vicinity of the blades have been smoothed graphically by connecting with smooth curves those points in the map at which the pressure coefficient is the same and which lie on the lines scanned by the transducers. At operating conditions which give rise to shock waves it is possible that a similar smoothing procedure will be required. In the long run there is a need for a numerical interpolation technique which avoids interpolation across blades.

Figure 7 is a wall pressure map produced by CONT for similar operating conditions to those used to obtain figure 5. However, pressures were measured at 255 points in the circumferential direction and MAP2 was used to generate pressure coefficients at 25 equally spaced stations in the axial
direction between transducers K 6 and K 12 . It is clear that quadratic interpolation does not avoid the problems of contour distortion by interpolation across a blade. In view of the very slow execution of CONT with a 25×255 array of pressure coefficients, it is recommended that an 8×128 array be used with CONTI.

Figure 8 is a wall pressure map of the same data as in figure 7 except that only every fourth circumferential point (of the original 255) was used in the reduction with CONT1 (i.e. axial interpolation is linear through use of CONTl but MAP2 is not used). The resulting 7 x 64 array of pressure coefficients gives rise to very similar contours to those shown in figure 7 for the finer mesh. In fact, the appearance of contours with $C_{p}=0.4$ near the blades in figure 7 might be an erroneous result of quadratic interpolation across blades. Note that the grid lines in figure 8 which indicate transducer locations are incorrectly plotted to have equal spacing, but this does not affect the above comments.

Figure 9 is a plot of contours for a higher compressor rotational speed. The data reduction techniques were identical to those used to obtain figure 5. Note that the blade location shown was that calculated for the data of figure 5. The location is slightly in error due to a difference in the tuning of the phase-lock loop circuit in the pacer for the second test. This problem has been solved recently by using the near-discontinuity in the pressure distribution measured by the transducer at the leading edge to position the blade tip.

Again it is stressed that the results presented are prelinimary and are intended merely to demonstrate the methods used and the capabilities of the system.

5. CONCLUSIONS AND RECOMMENDATIONS

Programs for the acquisition and reduction of fluctuating casing wall pressures in a transonic compressor stage have been developed and run successfully with the compressor at this time operating at up to 60 percent of the design speed. Evaluation of the data acquisition system on a mechanical simulator indicates that it can operate over the full speed range of the compressor. In fact, at higher speeds the signal to noise ratio in the Kulite transducer outputs will improve significantly because of the higher pressures that will be encountered.

The pacer mode of synchronized sampling has made it possible to determine in a versatile manner the wall pressure maps in the rotating frame of the rotor. The pacer system can also be used to obtain measurements of flow properties away from the wall, e.g. flow velocity measurements with a dynamic probe. Wall pressure maps have been presented solely to demonstrate the capabilities of the pacer technique and of the data acquisition and analysis. Comprehensive data will be presented and interpreted in a subsequent report.

There are some aspects of the programs which can be refined or which need further evaluation and the following recommendations are made.

1. The subroutine RPACE in KULITE causes a sample to be taken in pacer mode about every tenth revolution of the rotor at 60 percent of design speed. This causes a delay in data acquisition which could be reduced by modifying subroutine RPACE.
2. The degree of steadiness of pressure distributions in the frame of the rotor needs further investigation. This should begin with an examination of the standard deviations already computed in pacer mode. In separate
tests, a larger number of samples (at least 500) should be taken for each of several steps between blade pairs and the variations at each step examined for frequency content. The measurements should then be repeated with the case wall rotated peripherally by at least 90°.
3. The technique of calibration of the Kulite pressure transducers under operating conditions effectively takes account of change in transducer sensitivity with temperature. Change in transducer offset (d.c. level) with temperature is presently handled by equating the time-average transducer output voltage with the steady pressure obtained from a pneumatic static tap at the same axial location. The relationship between the steady pressure indicated by the pneumatic tap and the time time-averaged pressure at the tap needs further investigation.
4. Because transducer KIO and pneumatic tap S1O are not coincident axially it is necessary to interpolate between readings at S10 and S11. The interpolation in MAP1 is at present linear but its adequacy has not been fully evaluated.
5. The large pressure gradients in the axial direction across rotor blades are not resolved well because of the limited number of transducers. Two additional transducers, located midway between K9 and K10 and K10 and K11, would greatly alleviate this difficulty. Linear axial interpolation across blades, as in CONT1, is misleading and hand smoothing of contours near blades is presently necessary. Quadratic interpolation, as in MAP2, does not solve the problem. Extrapolation of data up to but not across a blade surface should be investigated.
6. Shock waves have not been encountered at the low operating speeds at which the present data was obtained. The accuracy of resolution of shock waves should be studied in the light of the above discussion regarding large pressure gradients across blades.
7. The blades have been located on the wall pressure maps in this report from knowledge of the point in the circumferential pressure distribution (indicated by transducer K9 at the blade leading edge) at which the circumferential pressure gradient is steepest. This technique is subject to an, as yet, undetermined uncertainty due to irregularities in the geometry from blade to blade. The alternative procedure, whereby blades are located by use of the phase relationship between the one per blade signal and the circumferential pressure distributions, also needs further evaluation.
8. In its present form the data acquisition system requires frequent keyboard entries by the operator. In principle the system can be fully automated by pre-entering all necessary data with DATA statements and by replacing INPUT statements by READ statements. Some WAIT statements in KULITE would be needed to allow TRAN4 to catch up to KULITE.
9. The format of graphical outputs can be improved by using the plotter to add alphameric information.
10. Two-way data transfer beteen the HP21MX and the HP9830A is feasible. This capability should be developed to enable use of the faster HP2lmX for repetitious data reduction.

6. REFERENCES

1. PAIGE, G. C., Measurement of Case Wall Pressure Signatures in a

Transonic Compressor Using Real-Time Digital Instrumentation. Naval
Postgraduate School, M. S. Thesis, June 1976.
2. VAVRA, M. H., Design Report of Hybrid Compressor and Associated Test

Rig. Naval Postgraduate School Report NPS-57VA73071A, July 1973.
3. VAVRA, M. H. and SHREEVE, R. P., A Description of the Turbopropulsion

3 Laboratory in the Aeronautics Department at the Naval Postgraduate
School. Naval Postgraduate School Report NPS-57VA72091A, September 1972.
4. WEST, J. C., Jr., Digital Programmable Timing Device for Fast Response

Instrumentation in Rotating Machines. Naval Postgraduate School, M.S.
Thesis, December 1976.
5. Hewlett-Packard Operating and Service Manual. High Speed Data Acquisition

Subsystem 2311A, HP2311-90001, March 1970.

APPENDIX A

Table 1 contains the axial and circumferential location of the Kulite pressure transducers and the axial location of the pneumatic static pressure taps.

Kulite transducer number	Pneumatic static tap number	Axial distance downstream of K6 (inches)	```Circumferential location relative to K6 in direction of rotation```
K6	-	0	0°
K7	-	0.50	$+10^{\circ}$
K8	-	1.00	0°
K9	-	1.37	$+10^{\circ}$
K10	-	1.75	0°
K11	-	2.12	$+10^{\circ}$
K12	-	2.50	0°
K13	-	3.00	$+10^{\circ}$
	S6	0	-
	S7	0.50	-
	S8	1.00	-
	S9	1.37	-
	S10	1.55	-
	S11	2. 12	-
	S12	2.50	-
	S13	3.00	-

Table 1 Location of Kulite pressure transducers and pneumatic static pressure taps.

APPENDIX B

DETALLS OF KULITE

KULITE is the data acquisition program for the HP21MX computer．Its three modes of operation are indicated in section 3．2．Figure 10 is a flow diagram of the program and a listing is given in Table 2.

Variable Assignment for KULITE

I1－Run 非．Same as Run 非 in Log Book assigned to each start－up of the compressor

I2－Test 非．Refers to a particular operating condition within a run．

I3－Day
I4
－Month
I5
－Year
I6
－A／D converter mode 非．
I7
－Samples／channel in free－run mode．
I8
－Not used．
－Experiment 非．Refers to either
（i）One time series of free－run data，
（ii）A complete set of calibration readings（averaged）
for all transducers，or
（iii）Averaged pressures across one blade pair in Pacer mode．

A1－Channe1 非．Refers to A／D converter．
T1－Transducer 非．
N1－Samples／point in Pacer mode．
N2－Blade pair 非．
M－Mean of pressure samples at a point in Pacer mode．
S－Standard deviation of pressure samples at a point in Pacer mode．
$R \quad$－Mean of one／blade signal at a point in Pacer mode．
L－Row number in K matrix of calibrations．
A3，A4，A5，A6－Associated with subroutine RPACE and defined by WEST（1976）
A［101，16］－Consecutive free－run samples stored row by row．
B［101，16］－Buffer in subroutine R5610
C［10］，D［10］－Buffers in subroutine R5610
$E[4,255]$

K[5, 12] - Matrix of calibrations. Rows 1, 2, 3, each contain averaged calibration voltages for the twelve transducers. Each of rows 1, 2, 3 corresponds to a different calibration level. Row 5 contains Il, I2, I3, I4, I5, I9 and the three reference pressures(which are keyed in on request) in $\mathrm{K}[5,7]$, $\mathrm{K}[5,8]$, $\mathrm{K}[5,9]$. Row 4 is treated as another calibration level and is used to scan the offsets if needed. In that case any value can be input to $K[5,10]$ for $P R e f$.

Figure 10. Flow diagram for KULITE

```
FEM "KLLITE" DATA LOGGING PPOGRAM--SIMMONS--11 APPIL, 1977
DIM A[101,16], E[101,16],C[10], D[10], E[4,255],K[5,12]
PRINT "ENTER---RUN#,MONTH, DAY,YEAR"
    FOR I=1 TC 5
    FOR J=1 TO 12
    LET K[I,J]=0
    NEXT J
    NEXT I
    INPUT 11,14,13,15
    PRINT "ENTER O IF 9830 IS RESET----1 FOR END"
    INPUT R8
    IF R8>.5 THEN 470
    PFINT "ENTER---TEST#, EXPERIMENT#"
    INPUT I2,I9
    PPINT *O FOR CALIERATION---OTHERNISE 1"
    INPUT 21
    PRINT# 8;己1
    IF Z1<.5 THEN 129
    PPINT "ENTER---MODE#, CHANNEL#, TRANSDUCER#*
    INPIT I 6,A1,TI
    PPINT* 8:11
    PRINT# 8;I2
    PRINT# 8;13
    PPIINT# 8;I4
    PPINT# 8:I5
    PRINT# 8:IG
    PRINT# 8;I9
    PRINT# 8;T1
    PFINT# 8;A1
    IF 16=0 THEN 165
    IF 16=4 THEN 103
    PFINT "MPONG MODE#"
    GOTO 30
        PRINT "ENTEP SAMOLES / CHANNEL (NOT > 1616)"
        INPUT I7
        PFINT# 8:I7
        R5610(7,A[1,1],17,Ai,16, E[1,1])
        PPINT "DATA TAKEN"
        FOP J=1 TO 101
        FOR I=1 TO 16
        PRINT# 8;A[J,I]
        NEXT I
        NEXT J
        GOTD 16
        LET L=0
        LET L=L+1
        PRINT "ENTEP P REF(IN. H2C REL ATMOS) IF READY FOR CALIBRATION"
        INPUT K[5,6+L]
```

133 FOR $J 1=1$ TO 12
134 PRINT *STAPTING CALIBRATION OF A/D CHANNEL \# *JI
135 LET AI=J1
$136 \mathrm{R} 5610(7, A[1,1], 1616, A 1,4, \mathrm{~B}[1,1])$
137 LET K[L,J1]=0
138 FOR $J=1$ TO 101
139 FOR $I=1$ TO 15 STEP 2
140 IF AES (A[J,I])<.98 THEN 145
141 PRINT
142 PRINT
143 PDINT
144 GOTO 131
145 LET K[L,J1]=K[L,J1]+A[J,I]
146 NEXT I
147 NEXT J
148 LET K[L,J1]=K[L,J1]/1616
149 NEXT J 1
150 PRINT "O FOP ANOTHER CALIBRATION-OOTHERWISE 1"
151 INPUT 22
152 IF Z2<.5 THEN 130
153 LET K[5,1]=I1
154 LET K[5,2]=I2
155 LET K[5,3]=I3
156 LET K $[5,4]=I 4$
157 LET K[5,5]=I5
159 LET K[5,6]=I9
159 FOF $I=1$ TO 5
160 FOR $J=1$ TO 12
161 PRINT* 8; K[I,J]
162 NEXT J
163 NEXT I
164 GOTO 16
165 PRINT "ENTER BLADE PAIR \#, SAMPLES/PQINT"
166 INEUT N2,N1
167 ?RINT\# 8;N1
168 PRINT\# 8;N2
170 LET A3=0
180 IF T1>INT(T1/2)*2+.1 THEN 190
181 LET A6=32768+N2*256-64
182 GOTO 195
190 LET A6 $=32768+N 2 * 256$

```
195 FOR I=1 TO 255 STEP 2
200 LET A3=A6+I
215 LET \(P=0\)
\(225 \operatorname{RPACE}(A 3, A 4, A 5)\)
\(230 \mathrm{R} 5610(7, C[1], N 1, A 1,0, D[1])\)
240 FOR \(J=1\) TO N1
241 LET B[J,1]=C[J]
242 NEXT J
243 LET A3 \(=32768+N 2 * 256+1\)
244 PPACE (A3, A4, A5)
\(245 \mathrm{R} 5610(7, \mathrm{C}[1], \mathrm{N} 1,0,0, \mathrm{D}[1])\)
246 FOR J=1 TO N1
247 LET \(R=R+C[J]\)
250 NEXT J
255 LET R=R/N1
260 LET \(S=0\)
270 LET \(M=0\)
280 FOR \(J=1\) TO N1
290 LET \(M=M+B[J, 1]\)
300 NEXT J
310 LET M=M/N1
320 FOR \(J=1\) TO N1
330 LET \(S=S+((E[J, 1]-M) *(B[J, 1]-M))\)
340 NEXT J
350 LET \(S=S Q R(S /(N 1-1))\)
360 LET E[1,I]=M
370 LET E[2,I]=S
380 LET E[3,I]=A4
385 LET E[4,I \(]=\mathrm{F}\).
390 NEXT I
400 FOR \(J=1\) TO 4
410 FOR I=1 TD 255 STEP 2
420 PRINTA 8; E[J,I]
430 NEXT I
440 NEXT J
450 GOTO 16
470 END
```


Notes on KULITE

1. A/D converter channels. It is essential that the "raw" one per blade signal be input to channel 1 of the A / D converter. Allocation of the other channels is not unique but the allocation in Table 3 is recommended. Channels 11 and 12 are scanned but at present are not used in subsequent analysis.

A/D Converter Signal
Channel Number

0	one per blade raw signal
1	K6
2	K7
3	K8
4	K9
5	K10
6	K11
7	K12
8	K13
9	$P_{\text {ref }}-P_{\text {atmos }}{ }^{*}$
10	S2- $\mathrm{P}_{\text {ref }}$
11	Unused
12	Unused

Table 3. Allocation of signals to A/D converter channels. ${ }^{*} \mathrm{P}_{\text {ref }}$ is pressure applied to reference side of Kulite transducers.
2. Subroutine R5610 is described by WEST (1976, p. 17).
3. In calibration mode the scan through the twelve channels must be made four times. The first scan must be with. the pressure tapping $S 2$ applied simultaneously to the reference side of Kulite transducers. The second
and third scans must be made with other steady pressures applied to the reference side of the kulites. The fourth scan must be made to satisfy the program but at this stage the data taken is not used in subsequent analysis. This scan is included to enable logging of the offsets on the Kulite amplifiers should they be of interest.
4. The program searches for overloads (i.e. greater than 0.98 volts or less than - 0.98 volts in the calibration signals). If it detects an overload among alternate samples in the 1616 samples taken from any transducer the offending A/D converter channel number is displayed, the scan is aborted and the program is reset to repeat the scan. The limit of 0.98 volts can be changed in line 140.
5. The one per revolution signal from the timing wheel indicates the origin for circumferential measurements around the rotor. The pacer then uses the one per blade signal to divide the rotor circumference into 9 equal intervals, the first interval beginning at the origin. These intervals are designated by blade pair numbers, although the start of an interval need not coincide with a blade tip. Each interval represents a circumferential length, in the rotor frame, equal to that of the arc (measured at the wall) across two adjacent blade passages. Each of the nine intervals is divided into 256 sub-intervals. In pacer mode the scan across an interval begins after the first sub-interval and ends after the 255th sub-interval. With stepping sequentially across the sub-intervals in pairs, a total of 128 points are sampled. It is convenient to take 10 samples at each point (one sample approximately each ten revolutions) to compute the mean and standard deviation.
6. Even numbered transducers (e.g. K6, K8 etc.) are located on one axial line and odd numbered transducers are on another axial line which is displaced around the casing wall by 10 degrees in the direction opposite that of rotation of the rotor. The parity of the transducer number is evaluated in line 180.

The variable A3 determines the time (in terms of degrees of rotation of the rotor) after the one per revolution pulse when a sample is taken at point I. For example, in line 190, $A 6=32768+\mathrm{N} 2 * 256$ for odd transducer numbers, and $\mathrm{A} 3=\mathrm{A} 6+\mathrm{I}$. This defines the sampling time (approximately each tenth revolution) for point I in blade pair N2. ($\mathrm{I}=1$ to 255 , N2 $=1$ to 9). Point I can be sampled 10 degrees earlier for even numbered transducers by setting

$$
\mathrm{A} 6=32768+\mathrm{N} 2 * 256-64
$$

and $A 3=A 6+I$
The subroutine RPACE is described in more detail by WEST (1976).
7. During each scan of a transducer across a blade pair the raw one per blade is also sampled. This is used later in TRAN4 to determine the location of the measured pressure distribution relative to the rotor.

APPENDIX C

DETAILS OF TRAN4

TRAN4 is the data acquisition program for the HP 9830A programmable calculator.

Figure 11 is a flow diagram and a listing is in Table 4.

Variable Assignment for TRAN4

N1 - RECORD 非. i.e. Number of first available record in DATAYl
Z1 - IDENTIFIER (= 0 FOR CALIBRATION - OTHERWISE 1)
A3 - BLADE PAIR 非
A2 - SAMPLES/POINT in Pacer mode.
T1 - LOCATION (between 1 and 255) of point in blade pair where l/blade signal is 0.5 volts and increasing.

T2

- Location of point in blade pair where $1 / b l a d e ~ s i g n a l ~ i s ~ 0.5$ volts and decreasing.

NOTE that variable names in this array are those used in 21MX program. They should not be confused with variables used in TRAN4. This is the matrix of averaged data taken in RPACE across two blade passages. Note that 128 points can be changed by changing dimension statement and the FOR loop.

B[9] - Buffer for identification data
$[I 1, I 2, I 3, I 4, I 5, I 6, I 9, T 1, A 1]^{T}$
NOTE that the variable names in this array are those used in 21MX program.
$D[16,102]-$

Free run data Stored row by row

NOTE that variable names in column 102 are those used in 21MX program.
$K[5,12]$ - Same as $K[5,12]$ in $21 M X$ program.

DATA FILES

RECY 非

DATAY1 Data file for calibration, free run and Pacer data. ie. for K, D and A arrays respectively. It contains 300 records.


```
E0 EEHDE!"H
&4 H|T U= EE
O-NH: H=EEF
```



```
Gig EHPES (1,%?%
16r If 21%H, FHEH 206
```



```
12g FOR I=1 TG 3
13日 EHTEF &%*リE! J
1+6 HEST 
15G REM TEGT HOLE#
1EG [F E[E]=H PHEH 5BG
170 IF E[G]=4 THEH SEG
IEG LISF "HFOHG MDLE #":
1%G EEM FEDEIVE H&I STORE IGHLIERGTDOH DATH
20日 FOE T=1 TO 5
10 FOF =1 TG &
20 EHTER &1.*N[I, |]
2SG HENT I
24日 VENT I
25G FEIHT
```



```
2"白 F-FIHT
20日 HAT FEIFT F
200 EEHII +2.H1
gG MHT PEIHT # E:B
810:t=111+1
SOB FEGI #1:1
3atएEIHT $1%H1
84日 GOTG 90日
GEG FEM FEEEIVE HAD GTGRE FPEE-RIH IHTH
G6 EHTEE & 1.5%IT
G日 FOE I=1 TG IE
8日G FOR I=1 TO 1&!
#gG EHTEF (1:+OII[, 1]
40日 HE%T I
416 HENT I
4EFGFI=1 TG9
434 D[I.1日2]=E[I]
44G HEST I
45% [1[10.102]=[7
40日 EEHI #2.|\
40日 唯T FFIHT H 2!H
486 H1=H1+13
4GRE日G #1.1
SG日 FEINT # 1:H1
519 10T口 856
GEG EEM RELEIVE FGGEF IHTH
CG EHTEF (1, +AG
54 EHTER &1, +G%
55GOR I=1 TG &
5EG FOR I=1 TI 1EE
5% EHTEF &14+1H[1:[]
5BG HENT I
5.GG HEPT .
```



```
y \%
-
```



```
E5 GTG
```



```
セーロ \(5=1+1\)
```



```
\(76 \mathrm{~F}=\mathrm{F}\)
\(\bar{\square} 16\) GTO
```



```
FBGEFA=1 TO
\(3+[\square 5,1]=E 1]\)
```



```
ELG MHT FETHT H 天B
B1. \(101=12+5\)
```



```
Ggd Tr E[E]=6 THEF 10 G
```



```
GG FFINT
GEFFIHT
```



```
G7. FFIHT" FEEA"H1-1
GGGGTO 6
```



```
1月16FFIHT
1 EGG FRIHT
1 GO FEIHT
164 万ロT01120
```



```
169FFITT
1160 FFITT
```



```
11こ日 [IGF"EHTEF + FIF MPE MATH":
1136 IHFUT !
114 IF IG THEH
125 FFFIT
\(1 \pm 6 \mathrm{FFINT}\)
11FGFRIM
13EEHII
```

1. (line 30) DATAY1 is a file on a removable disk for temporary storage. At the end of Run number n (n is a two digit integer) a file CKRWn must be opened on the fixed disk and data must be copied into it from DAYAI for long term storage. The number of records in CKRWn must equal the sum of record number printed out with identification of the last experiment and a number k where

$$
\begin{aligned}
k & =1 \quad \text { if last experiment was a calibration } \\
& =5 \text { if last experiment was in pacer mode } \\
& =13 \text { if last experiment was in free-run mode }
\end{aligned}
$$

Figure 12 contains sample print-out from TRAN4 for the three modes.
2. (Line 600) The position of the centre of the raw one per blade pulse is found relative to the pressure distribution across a blade pair by searching through the 128 averaged samples at each point to find the sample which first exceeds 0.5 volts and the first subsequent sample which is less than 0.5 volts. The corresponding point numbers are averaged. If the pulse is not found (due to inadequate signal level), the program displays an ERROR. After the correct one per blade signal has been re-established both KULITE and TRAN4 must be rerun.

Figure 12．Sample print－out from TRAN4 for calibration，mode 0 （pacer） ，and mode 4 （free－run）operation．

F Exillat \＆

Pr \#
戶斤品 5
Fatre 等 it

DETALLS OF RESETI

RESET1 initializes to 1 the number in the file named RECY非. This enables data acquired at the start of a run to be stored at the start of the file named DATAY1. Table 5 is a listing.

Table 5. Listing of RESETl


```
#g intT G
GO&EGEGTH
*% =1
```



```
"G EEHD # !.!
G%FHU #!:H
GFFPHT F
100 WIT!
```


APPENDIX E

DETAILS OF MAP1

MAP1 is used to compute the sensitivities of the Kulite pressure transducers and to convert voltages sampled at the pressure transducer outputs to pressure coefficients. Figure 13 is a flow diagram and a listing is in Table ${ }^{6}$.

Variable Assignment for MAP1
N - compressor RPM
$T \quad$ - total temperature (called $T_{T O T}$ elsewhere) measured at axial location of S 2 (entered in degrees F).

P1 - Static pressure ($\mathrm{P}_{\text {STAT }}$) measured at S 2 (entered in inches of water absolute).

P2 - Total pressure ($\mathrm{P}_{\mathrm{TOT}}$) measured at axial location of S 2 (entered in inches of water absolute).

M - square of Mach number at axial location of S2.
U1 - square of rotor tip speed in $f t^{2} / \mathrm{sec}^{2}$.
Al - square of speed of sound at axial location of $S 2$ in $\mathrm{ft} / \mathrm{sec}$.
Q - Reference pressure for computing pressure coefficients.
C1, C2, C3 - First, second and third calibration pressures applied to reference side of Kulite transducers (inches of water relative to atmospheric).

R0 - Record number for calibration data on disk.
TO - Kulite transducer number.
A - Kulite transducer sensitivity in inches of water per volt.
P0 - Pressure from pneumatic wall static tap corresponding in axial location to a Kulite transducer. (inches of water relative to pressure at S2).

Figure 13. Flow diagram for MAP 1


```
&& +1%|
```



```
G", It,#%
```



```
120
```



```
EO IHF!IT FH
ZGEHD+1.FE
```



```
O6 &%FUIT F6,
```



```
3-1HFUT FI
9曾 EEFD F14FI
BU唨HT FEHE H 1:G
460% NEO
4!0 FOF I= FO 
```



```
4OTENT 
```



```
4% FGF I= TO O-
4G IF FI[]\LTG-5,HEN+1] THEH 56G
```



```
EGE HENT I
51] |[TG-G,NG+1]=F[1]
品回 FOF I= TO
```



```
540!|[G-5,4E+1]=F[1]
SGG fENT I
50% +16=r4%+1
```



```
5% TL=TO+1
```



```
Table 6. Cont.
```

```
E:1 0.||| y+m
```



```
Gm! !-!f!*!j
ETG HEGT |
E%g 招T
```



```
7+b L=L[1+1]
```



```
FBE INET I
TG FFIH GF M1F:G
7-5 #TOF
```



```
E%4 F=-1,
E46 EET!!!
GG EHT
```

R1	- Record number for pacer data.
N0	- N0+1 is pacer data quarter number. The 128 samples are divided into 4 sets of 32 .
U	- Maximum pressure coefficient in set across two blade passages.
L	- Minimum pressure coefficient in set across two blade passages.
AS[5, 128]	- Same as A[5, 128] in tran4.
$C[5,12]$	- Same as $\mathrm{K}[5,12]$ in TRAN4.
P [32]	- Array of pressure coefficients for one transducer and in one quarter of pressure distribution across two blade passages.
U[8, 4]	- U[I, J] is local maximum pressure coefficient for transducer number I and quarter J.
L [8, 4]	- L[I, J] is local minimum pressure coefficient for transducer number I and quarter J.
DATAY1	- Same data file as in TRAN4.
PRESS	- contains pressure coefficients. The 32 records contain in order quarters 1, 2, 3, 4 for transducer 6, quarters 1, 2, 3,4 for transducer 7 , etc.

Notes on MAP1

1. The correct CKRWn file name for the run under consideration must be entered.
2. Storage of pressure coefficients. The 128 pressure coefficients associated with each transducer have been grouped into 4 sets (quarters) with each set being stored in a separate record. This has been done to facilitate use of interpolation programs such as MAP2. Interpolation expands the size of the data array so that pressure coefficients must be recalled from the mass memory in subsets in order to meet the storage 1imitations of the HP9830A.
3. Sensitivities of the Kulite transducers are computed as follows: C1, C2, C3 are the three steady pressures applied to the reference side of the Kulite transducers. They correspond to mean output voltages C[1, TO - 5], C[2, TO - 5], C[3, TO - 5] from Kulite transducer number TO. The sensitivity of a transducer (i.e. the slope of its calibration curve at a particular mean operating temperature and pressure) is obtained from a least squares fit of a straight line through the three points.
4. Calculation of pressure coefficients.

The Kulite transducer output voltages E are converted to pressure coefficients C_{p} as follows:

$$
C_{p}=((E-\bar{E}) * A+P 0) / Q
$$

where $\bar{E}=$ transducer mean output voltage obtained during calibration with S 2 on reference side of diaphragm.
$A=$ sensitivity of transducer in inches of water per volt.
PO = mean wall pressure (at same axial location as Kulite transducer) measured with pneumatic tap. (inches of water relative to S2).

Q = reference dynamic pressure (inches of water absolute) computed as follows:

The reference dynamic pressure is expressed in terms of the upstream density ρ and the upstream flow velocity measured in the rotating frame of the rotor. Hence

$$
\text { where } \begin{align*}
Q & =\frac{1}{2} \rho\left(V^{2}+U^{2}\right) \\
V & =\text { flow velocity at station } S 2(\mathrm{ft} / \mathrm{sec}) . \\
U & =\text { rotor tip speed } \\
& =\frac{\pi N}{30} \times \frac{5.5}{12} \mathrm{ft} \cdot \mathrm{sec} . \tag{1}\\
\mathrm{N} & =\text { rotor } \mathrm{RPM}
\end{align*}
$$

It follows (noting that variable names are not necessarily the same as in the listing of MAPI) that

$$
\begin{equation*}
\mathrm{Q}=\frac{1}{2} \gamma \mathrm{P}\left(\mathrm{~m}^{2}+\mathrm{U}^{2} / \mathrm{a}^{2}\right) \tag{2}
\end{equation*}
$$

where P, a, M are static pressure, speed of sound and Mach number at station S2.

But $\quad a^{2}=\gamma \mathrm{RT}_{\mathrm{T}}\left[\left(1+\frac{\gamma-1}{2} \mathrm{M}^{2}\right)^{-1}\right]$
and $M^{2}=\frac{2}{\gamma-1}\left[\left(\frac{P_{T}}{P}\right)^{\frac{\gamma-1}{\gamma}}-1\right]$
where T_{T} and P_{T} are total temperature and pressure at $S 2$. By introducing (1), (3) and (4) into (2), Q can be calculated in terms of P, P_{T} and T_{T}.
5. Note that S10 and K10 are not at the same axial location. For purposes of computing pressure coefficients an effective mean wall pressure at k10 is obtained by linear interpolation using values at S10 and S11.
6. The maximum and minimum pressure coefficients are computed to aid in the choice of contours when using the programs CONT or CONT1.

APPENDIX F

DETAILS OF MAP2

MAP2 is used to convert the 8×128 array of measured pressure coefficients to a 29 x 128 array through quadratic interpolation in the axial direction. A listing is in Table 7.

Variable Assignment for MAP2

B [32]	- temporary storage of pressure coefficient
C [29,32]	- array of interpolated pressure coefficients across one quarter of a blade pair.
$\mathrm{P}[8,32]$	- Array of pressure coefficients at Kulite transducer locations across one quarter of blade pair.
X[8]	- Axial location of Kulite transducers downstream of transducer K6. (inches).
Q	- quarter number.
PRESS	- Same data file as in MAPI.
INTER	- File for storage of interpolated pressure coefficients across one quarter of blade pair (15 records).

Notes on MAP2

1. Lagrangian interpolation is used, i.e. if P_{1}, P_{2}, and P_{3} are known at x_{1}, x_{2}, x_{3} then

$$
\begin{aligned}
P(x) & =\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} P_{1}+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} P_{2} \\
& +\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} P_{3}
\end{aligned}
$$

\qquad FIF $T=1+111$ -
!j+14 1]=1+61-6!

HEXT
-1

Fमि
FE1HT

$\therefore 14$ - 1
जーH NF?

$\stackrel{+}{+}$
EHJu 4
$=$
1
$=$
E
2. As a result of the equispaced interpolation, the transducer axial locations will in general not coincide with axial stations in the interpolated array.
3. Three interpolations are made in the axial direction between transducer measurements.
4. The program must be run for each quarter of the array of measured pressure coefficients. After each running of the program the contours must be plotted with CONT prior to running MAP2 for another quarter.
5. Interpolation between $\mathrm{X}[1]$ and $\mathrm{X}[2]$ is made with a quadratic through pressure coefficients at $\mathrm{X}[1], \mathrm{X}[2]$ and $\mathrm{X}[3]$. Interpolation between $X[7]$ and $X[8]$ is made with a quadratic through $X[6], X[7]$ and $X[8]$. Interpolation between $X[I]$ and $X[I+1]$ (for $I>1$ and <6) is made by averaging the quadratic through $X[I-1], X[I]$ and $X[I+1]$ and the quadratic through $X[I], X[I+1]$ and $X[I+2]$.

APPENDIX G

DETAILS OF CONT1
CONT1 is used to plot contours of constant casing wall pressure from an array of measured pressure coefficients. The program handles the nonuniform axial spacing of the Kulite transducers but requires uniform circumferential spacing in the array. CONTl is written to accept the array generated by MAPl. Figure 14 is a flow diagram and a listing is in Table 8. Variable Assignment for CONTI

P[I, J] - array of pressure coefficients
$A[3,3], B[3,3], Z[3], Q[3], D[2,2], F[2], G[2,2], H[2]$ - defined in note 6 of this appendix.
 of K6.

IO, JO - dimensions of $P[I, J]$ in axial and circumferential directi respectively.

C - value of pressure coefficient on a contour.
E - triangular element number.
El - number of starting element in a contour plot.
E2 - number of finishing element in a contour plot.
PRESS - Same file as in MAPI.

Notes on CONTI

1. The X (axial) and Y (circumferential) dimensions of P must be entered before program is run. $P[8,128]$ is nearly the maximum array size that can be stored in the HP9830A.
2. The axes are drawn so that X (axial) runs from K6 to Kl3 and Y (circumferential) runs from the start to the end of a blade pair. Contours

Figure 14. Flow diagram for CONTI


```
E|E GTO
EE MAT E=INQ'F
GGB NQT D=E%Z
```



```
EG [F O[1]=0 THEH OE
```



```
GGC'G=F[1,E]
```



```
G日 GTG FOE
"G0
```



```
F4日 
```



```
706 GT00
```



```
Eb0II[1, E ]=1
```



```
SG TI[G, 二]=0[%]
```



```
G+GF[z]=F-R[马]
GEOMETOLO
BG IF P=0 THEH ASEO
BG MET G=ING, [1]
BG MFT H=E+F
```



```
G00 GOTOLOG
G10 H=IHT %H[:1]:
```



```
G4 [F G[1]=0 |HEN IG1%
```



```
GEG Y=H[1, 3]
```



```
GG% %OTO IO|
%% U= [HT C'S
```



```
165% COTO 1054
1HOL H=IHTT:
```



```
1FBETHL! I= :
16G4 TII ! % \=1
1106 T[, #, ]=0! | |
```



```
    1014 4.14% +1%!

Table 8．Cont．

12G BGTM 12 E
WG FEH
L E Q HEGTE

エEGINFUT FO
ロアG IF GOG THEH 2GG
126 EH
will not quite go to these extremities because the pacer system starts sampling at \(1 / 256\) th of a blade pair and finishes sampling at \(255 / 256\) th of a blade pair. Recall that the start of a blade pair need not coincide with a blade because of phase lags in the pacer system and the location of the timing disk relative to the rotor. Grid lines parallel to the \(Y\)-axis are the lines scanned by the Kulite transducers.
3. If other transducer locations are used their axial distance downstream of K 6 must be entered before the program is run.
4. The variable plotted in the \(Y\)-direction is the column number in \(P\). The variable plotted in the \(X\)-direction is the axial location of a transducer (downstream of \(K 6\) ) and is derived from the corresponding row number in \(P\). When setting up the \(X-Y\) plotter it is advisable to make both the \(X\) and \(Y\) scales equal to twice full scale. Note that the circumferential distance along the wall across two blade passages is 3.847 inches.
5. Entering of the first and last element numbers enables faster plotting of a contour which is known in advance to cover only a limited part of the field.
6. Triangular element representation of the surface defining the pressure coefficient distribution, \(C_{p}(X, Y)\)

The surface \(C_{p}=C_{p}(X, Y)\) is approximated by triangular elements as illustrated in figure 15. Element numbers E are as shown. This process represents linear interpolation between measured pressure coefficients. Contours are obtained from the intersection of planes \(C_{p}=\) constant with this approximation to the pressure distribution. Thus the contours are composed of straight line segments. The nodes correspond in the Y-direction (circumferential) to points at which pacer data is available. The node numbering, in the local sense, for typical odd and even numbered elements is shown in figure 15.


Figure 15 Numbering of triangular elements in CONT and CONT1. Also numbering of nodes (vertices of triangles) for add and even numbered elements.

If \(Z=a X+b Y+c\) is the plane containing the three nodes of \(a\) triangle then
\[
\left[\begin{array}{l}
Z(1) \\
Z(2) \\
Z(3)
\end{array}\right]=\left[\begin{array}{lll}
X 1 & Y 1 & 1 \\
X 2 & Y 2 & 1 \\
X 3 & Y 3 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\]
where \(Z(I)\) is the pressure coefficient at local node number I (i.e. at XI, YI).

This matrix equation is written as
\[
\underset{\sim}{z}=A \underset{\sim}{\sim}
\]
and hence
\[
\text { . } \underset{\sim}{ }=A^{-1} \underset{\sim}{Z}=B \underset{\sim}{Z} \quad \text { say. }
\]

If E is odd, the node coordinates are related to the element number as follows:
\[
\begin{aligned}
& \mathrm{X} 1=\mathrm{A}[1,1]=\operatorname{INT}(((E+1) / 2-.00001) /(\mathrm{J} 0-1))+1 \\
& \mathrm{Y} 1=(E+1) / 2-(\mathrm{A}[1,1]-1) *(J 0-1) \\
& \mathrm{X} 2=\mathrm{X} 1, \mathrm{Y} 2=\mathrm{Y} 1+1 \\
& \mathrm{X} 3=\mathrm{X} 1+1 \quad, \quad \mathrm{Y} 3=\mathrm{Y} 1
\end{aligned}
\]

Note that the number . 00001 is included to avoid problems associated with round-off error.
\[
z=a X+b Y+c \text { is plane containing triangle. For } Z=c ' \text {, line of }
\] intersection with triangle (i.e. contour) is given by \(a X+b Y+\left(c-c^{\prime}\right)=0\).

On the side \(X=I=A[1,1]\), (See Figure 15)
\[
\begin{aligned}
Y= & \left(-a A[1,1]-\left(c-c^{\prime}\right)\right) / b \\
= & \left(-Q[1] * A[1,1]-Q(3)+c^{\prime}\right) / Q(2) \\
& \quad \text { provided } Q(2) \neq 0
\end{aligned}
\]

If \(Q(2)=0\), the contour is parallel to the side in question. On the side \(Y=J=A[1,2]\)
\[
\begin{aligned}
X=(-Q[2] * A[1, & \left.2]-Q(3)+c^{\prime}\right) / Q(1) \\
& \text { provided } Q(1) \neq 0
\end{aligned}
\]

On the hypotenuse
\[
\begin{aligned}
& X+Y=A[3,1]+A[3,2] \\
& a X+b Y=c^{\prime}-c
\end{aligned}
\]

Hence
\[
\left[\begin{array}{ll}
1 & 1 \\
a & b
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
A[3, \\
1]+A[3,2] \\
c^{\prime}-c
\end{array}\right]
\]

This matrix equation is written as

Hence \(\quad \underset{\sim}{H}=G \underset{\sim}{G}\) where \(G=D^{-1}\)
\[
\underset{\sim}{\mathrm{DH}}=\underset{\sim}{E}
\]

If E is even, the node coordinates are related to the element number as follows:
\[
\begin{aligned}
& \mathrm{X} 1=\mathrm{A}[1,1]=\mathrm{INT}((\mathrm{E} / 2-.00001) /(\mathrm{J} 0-1))+1 \\
& \mathrm{Y} 1=\mathrm{A}[1,2]=\mathrm{E} / 2-(\mathrm{A}[1,1]-1) *(\mathrm{~J} 0-1)+1 \\
& \mathrm{X} 2=\mathrm{X} 1+1, \mathrm{Y} 2=\mathrm{Y} 1-1 \\
& \mathrm{X} 3=\mathrm{X} 1+1, \mathrm{Y} 3=\mathrm{Y} 1
\end{aligned}
\]
\(Z=a X+b Y+c\) is plane containing the triangle. For \(Z=c^{\prime}\), line of intersection (i.e. contour) is given by \(a X+b Y+(c-c\) ) \(=0\).

On the side \(X=I=A[2,1]\),
\[
\begin{gathered}
Y=\left(-Q(1) * A[2,1]-Q(3)+c^{\prime}\right) / Q(2) \\
\text { provided } Q(2) \neq 0
\end{gathered}
\]

On the side \(\mathrm{Y}=\mathrm{J}=\mathrm{A}[1,2]\)
\[
\begin{array}{r}
X=\left(-Q(2) * A[1,2]-Q(3)+c^{\prime}\right) / Q(1) \\
\text { provided } Q(1) \neq 0 .
\end{array}
\]

On the hypotenuse
\[
\begin{aligned}
& X+Y=A[2,1]+A[2,2] \\
& a X+b Y=c^{\prime}-c
\end{aligned}
\]

Hence
\[
\left[\begin{array}{ll}
1 & 1 \\
a & b
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{cc}
A[2, & 1]+A[2, \\
c^{\prime}-c
\end{array}\right]
\]

This matrix equation is written as

Hence
\[
\underset{\sim}{\mathrm{DH}}=\underset{\sim}{F}
\]
\[
\underset{\sim}{H}=G \underset{\sim}{F} \text { where } G=D^{-1}
\]

The intersections of the contour with the sides of the triangular elements are computed in the manner outlined above. Tests are performed to identify those points of intersection which lie on side of the triangle as opposed to intersections which lie on extrapolations of the sides.

\section*{APPENDIX H}

DETAILS OF CONT

CONT is used to plot contours of constant casing wall pressure from an array of pressure coefficients in which both the axial and the circumferential spacings are uniform. It can be used to plot contours for an array output by MAP2. The program differs from CONTl only in its plotting of \(x\)-coordinates of contours. A listing is in Table 9.

\section*{Notes on CONT}
1. If MAP2 is used for interpolation, the file PRESS must be replaced by file INTER and \(P\) must have dimensions \(P[29,32]\). Contours must be plotted by processing the array of interpolated pressure coefficients in four sections. This requires shifting of origin on the \(x-y\) plotter for each quarter.
2. The variables plotted in the \(x\) and \(y\) directions are respectively the row number and column number of the sub-array of pressure coefficients.


```

5\0% = = [1:1]

```

```

5G GTTO 5PG
540 PLDT ~9'%-1
5% I! 1:1]=1
5G IIC1,:]=1

```

```

GG0 II[z, z]=0[z]
G!gF[1]=F[3+1]+H[392]
E%GF[E]=G-G[%]
ES H= IET\11%
BE IF H=G THEH 1GG6

```

```

64G MAT H=G%F

```

```

G4%GTO 1006
EGFFLIT H[1],H[2]-1
EGG GOTO 10GE
GG [F S[I]=G THEH TEG

```



```

FE GOTG FGG
7B FGOT '''i'1
TEG IF D[E]=G THEH G%Q

```

```

\becauseG%=F[Z!1]

```

```

F90 MOTO GO
GGG F!UT U,Y-1
G% I[1.1]=1
\#,0}\operatorname{II}[1,2]=
EG
BG
GTGF[1]=F[G,1]+HाE,E]
GG F[z]=1-0[%]

```



```

gG BGT H=G%F

```


```

G0 FL[T H[1],H[%]-1

```

```

1GGFEH
16\#5 HEYT E

```



```

1%10%H0

```

\section*{APPENDIX I}

DETAILS OF PLOTS A AND PLOTS B
PLOTS A and PLOTS B are used to plot pacer raw data and free-run raw data respectively against circumferential distance. The programs are listed in Tables 10 and 11. Note that PLOTS A, with I = 1 in line 110, plots the output of the designated Kulite transducer. If I \(=4\) the raw one per blade signal on \(A / D\) converter channel number 0 is plotted.

```

20 UHIT G

```

```

4日 ITM IS[5,12G]
SQ IISF "EHTEF FEG\#":
EG IHFUT H
FG FEAII \#O,H
GB MHT FEHI \# 2:J
GOHLE E,30日,-1.5.2.5
TGE DJEF "IFH\& FMES', 1='ES G=NG":
14日 IHFUT HG
12g IF HU=0 THEN I5G

```


```

15[=1
1G日 FOF I=1 TO 126
170 FLOT e*!u!T!.1]
18G HEST I
100 FEH
200 EHI

```

```

 E IHtIT E
 ZGTLEG FEG'呆, DHTHY1
    ```

```

 4GIISF" "EHTEF FEO&":
 GG INFUIT H
 GEEEII ##+N
 FG FIOT FEGI # Q II
    ```


```

GE IHFUT HE
E IF HG=G THEH 114

```


```

1,G FOF I=1 TO 1E
120 FOF I=1. TO 1F1
AB FIDT \&T-1Y+1日I, 1.T[I. I]
14G HEST I
15% HENT I
15F FEH
1E EHI

```

\section*{APPENDIX J}

\section*{DETAILS OF TITIPK}

TITIPK is used to superimpose blade tip profiles on wall pressure contours. The program is loaded onto the programmable keys of the HP 9830 A . The program is listed in Table 12. The blade tip profile is tabulated by PAIGE (1976), figure 2 and table 1). The axial and circumferential units are inches and the program is compatible with a wall pressure map which has dimensions of 3 inches axially by 3.847 inches circumferentially. The "lower left" and "upper right" on the plotter should be set to the corresponding points on the wall pressure map.

The key programs should be "continued" after CONTl has been run so that the Kulite data is available in main memory. When <CONT> <f \({ }_{1}\) > is issued, the location (YO) of the blade leading edge from the lower boundary of the wall maps is calculated from the data of transducer K 9 and appears in the display. <CONT> <f \(\mathrm{f}_{0}\) is then issued and \(Y O\) is requested as an input. The blade profiles are then drawn and the key program ends. The contour plotting with CONT1 can be continued by issuing <CONT> 1250.

\section*{Table 12．Listing of TlTlPK}
```

| fol

```

```

\therefore1H *

```




```

*n [ff\! ','口
G日 ソD=人",

```



```

1% I| =HL+M1-4\&
146 %=10

```







```

*百 「-5=9-1-1
BGTA=T, TO EV

```






```

54 नीT! % % %
30%EN
gg vE=W T

```

```

-40ra-T1!
50 ry=24-4-01

```






```

4GFLOT \because+,O
4% !10% +6,
4+G FEF
45HTHEOT \,

```

```

4G Fב=-61+H1
456T3=1,4-51

```

```

SEG FOF 「L=TETHINOTEFT4
5101 =%t+51+3IH?,

```

```

FG IF U'HG:Z.G4 THER EOG

```



```

EDEFEF
SGG TEET T1
5%% 园

```










```

7010 017 - - %
FLE FEH
O-6 FIEMT
*W以EN

```




```

7%6 E钆品

```

\(304 \mathrm{a}+\mathrm{B}\)
4 Fine I= TG


7 GOTO 140
E4 IF \(I=1\) THEH \(1+1\)
QR IF YI THEH 14日
\(10 \mathrm{~A}=\mathrm{FE}+41\)


    174 明明
    4 H HENT
    150 ENa

\section*{APPENDIX K}

\section*{OPERATING PROCEDURE FOR DATA ACQUISITION SYSTEM}
1. Load Real Time Executive Basic into HP21MX computer.
2. Load KULITE into HP21MX. Tune pacer.
3. Put disk labeled "Transonic Compressor - Paige" into HP9867B mass memory.
4. At start of a run, get RESETl from unit 0 and run RESETl to initialize the number in file RECY非 to unity.
5. Scratch RESETI.
6. Get TRAN4 from unit 0 .
7. Run TRAN4. The HP9830A display will remain blank while the HP9830A awaits data from the HP2IMX.
8. Run KULITE, noting that the two mode switches on the Pacer must be set according to the \(A / D\) converter mode to be used (i.e. 0 or 4). In calibration, four scans of the twelve channels must be made. The first scan must be with the pressure at \(S 2\) on the reference side of the Kulite transducers. The second and third scans are made with other steady calibration pressures on the reference side. The fourth scans must be made but any signals can be used on the \(A / D\) converter provided that they do not cause overloads. In mode 0 the pacer must not be altered during an experiment.
9. On completion of an experiment both the HP9830A and the HP21MX must be reset as instructed by their displays prior to performing another experiment.
10. On completion of a run the data which is stored temporarily in DATAY1 file must be transferred to permanent files CKRWm duplicated on both unit 0 and unit 1. First open CRKW where \(m\) is the run number. The
length of CKRWm must be set at \(k\) records where \(k=\) record number for last experiment \(+g\)
and \(g=1\) if last experiment is a calibration
5 if last experiment is a pacer experiment
13 if last experiment is a free-run experiment
11. To abort the HP21MX program, enter \(A B\).

\section*{No. of Copies}
1. Defense Documentation Center
Cameron Station
Alexandria, VA 22314
2. Library ..... 2
Code 0212
Naval Postgraduate School
Monterey, CA 93940
3. Dean of Research ..... 1Code 023Naval Postgraduate School
Monterey, CA 93940
4. Department of Aeronautics
            Code 67
            Naval Postgraduate School
            Monterey, CA 93940
Prof. R. W. Bell, Chairman ..... 1
Prof. R. P. Shreeve ..... 1
Mr. J. E. Hammer ..... 1
5. Prof. J. M. Simmons ..... 2
Department of Mechanical Engineering University of Queensland

    St. Lucia, Q 4067

    AUSTRALIA
6. Commanding Officer ..... 1
Naval Air Systems Command
Navy Department
Washington, DC 20360
7. Dr. H. J. Mueller ..... 1
Code 310
Naval Air Systems Command
Navy Department
Washington, DC 20360
8. Mr. Karl H. Guttman ..... 1
Code 330
Naval Air Systems Command
Navy Department
Washington, DC 20360

\section*{No. of Copies}
9. Mr. Eric Lister
Supervisor, Exploratory Development
Naval Air Propulsion Center
Trenton, NJ 08628
10. Library ..... 1
NASA Lewis Research Center
2100 Brookpark Road
Cleveland, OH 45215
11. Library ..... 1
General Electric Company
Aircraft Engine Technology Division DTO Mail Drop H43
Cincinnati, OH 45215
12. Library ..... 1
Pratt and Whitney Aircraft
P. O. Box 2691
West Palm Beach, FL 33402
13. Library ..... 1
Pratt and Whitney Aircraft
East Hartford, CT 06108
14. Turbopropulsion Laboratories ..... 10
Naval Postgraduate School
Monterey, CA 93940
15. Dr. B. Lakshminarayana ..... 1
The Penn State University
233 Hammond Bldg. University Park, PA 16802
\[
\text { U } 179226
\]
```

